Standard Quotation Practice and

Price/Yield Formulae for Thai Government Securities*

1. Treasury Bill

■ Short-term discount instrument maturing within 12 months

Quotation Practice

■ Yield per annum specified to two decimal places

Day Count

Actual number of days from settement date to maturity date on the basis of 365 days a year

Formula

$$P = \frac{F}{1 + \frac{Y}{100} \times \frac{D}{365}}$$

โดย

P = Settlement price

F = Face value

Y = Simple yield per annum

D = Number of days from settlement to maturity

^{*}This is an unofficial English translation. In case of doubts, reference should be made to the original Thai text.

2. Accumulated-interest Bond

Long-term security (maturity of 1 year or greater) with accumulated interest, compounding semi-annually, paid on the maturity date

Quotation Practice

Price per cent, accompanied by semi-annual yield to maturity—both specified to two decimal places

Day Count

■ Actual/365 days basis

Formula

$$P = \frac{N}{\frac{D}{182.5}}$$

$$(1 + \frac{Y}{200})$$

โดย

P = Settlement price

N = Total redemption amount (principal plus accumulated interest)
received at maturity

Y =Semi-annual yield to maturity

D = Number of days from settlement to maturity

3. Bond paying interest every 6 months

- Long-term security (maturity of 1 year or greater) with semi-annual coupon payments
- In case where maturity date does not fall on the last coupon payment date, holder will on maturity also receive interest accrued from the last coupon payment date to maturity date.

Quotation Practice

"Clean" price per cent, accompanied by semi-annual yield to maturity—both specified to two decimal places

Day Count

Actual/365 days basis

Formula

$$Q + AI = \sum_{i=0}^{n-1} \frac{g/2}{\frac{(i + \frac{DSC}{})}{182.5}}$$

$$\frac{(1 + y)}{200}$$

$$\frac{100 + (g \times \frac{DCD}{})}{365}$$

$$\frac{(n-1 + \frac{DSC + DCD}{})}{182.5}$$

$$\frac{(1 + y)}{200}$$

Note: For ex-coupon trade, g/2 = 0 for the first coupon payment after settlement

Unit Q Clean price (Quoted price) Baht/100 Baht ΑI Accrued interest Baht/100 Baht g x DCS cum-coupon trade 365 $- (g \times DSC)$ ex-coupon trade 365 Coupon rate % p.a. g semi-annual yield to maturity % p.a. DCS = Number of days from previous coupon payment to settlement days DSC = Number of days from settlement to next coupon payment days DCD =Number of days from last coupon payment to maturity days Number of coupon payments outstanding times n

Alternative formula:

If
$$v = 1$$

$$1 + y$$

$$200$$

$$Q+AI = (V) x g \left[\frac{k}{2} + \frac{1 - (V)}{y/100} \right]$$

$$+ [100 + (g \times DCD)] \times (V)$$
+ $(n-1 + DSC+DCD)$

$$- 182.5$$

For cum-coupon trade,
$$AI = g \times DCS$$
 and $k = 1$

ex-coupon trade, $AI = -g \times DSC$ and $k = 0$

4. General Bond Formula

$$Q + AI = \sum_{i=0}^{n-1} \frac{g/H}{(i + DSC \times H)}$$

$$\frac{(1 + y)}{365}$$

$$+ \frac{100 + (g \times DCD)}{365}$$

$$\frac{(n-1 + (DSC+DCD) \times H)}{365}$$

$$\frac{(1 + y)}{100 \times H}$$

Note: For ex-coupon trade, g/h = 0 for the first coupon payment after settlement

or

$$Q + AI = (v) \qquad x \ g \ \left[\frac{k}{H} + \frac{1 - (v)}{y/100} \right]$$

$$= \frac{[n-1 + (DSC+DCD) x \ H)}{365}$$

$$+ [100 + (g \ x \ DCD)] \ x \ (v)$$

$$= \frac{1}{1 + \frac{y}{H \times 100}}$$
and $k = 1$ for cum-coupon trade
$$= 0 \qquad \text{for ex-coupon trade}$$

Unit

Q = Clean price (Quoted price)

Baht/100 Baht

AI = Accrued interest

Baht/100 Baht

 $= g \times \frac{DCS}{365}$ for cum-coupon trade

 $= -g \times \frac{DSC}{365}$ for ex-coupon trade

Q + AI = Dirty price (Settlement price)

Baht/100 Baht

g = Coupon rate % p.a.

y = Yield compounded H times per annum % p.a.

H = Coupon frequency times/year

DCS = Number of days from previous coupon payment to settlement days

DSC = Number of days from settlement to next coupon payment days

DCD = Number of days from last coupon payment to maturity days

n = Number of coupon payments outstanding periods

Quoted price = Q

Settlement price = Q + AI

For cum-coupon trade, AI = $g \times DCS$ 365

ex-coupon trade, AI = $- (g \times DSC)$

For comparison purpose, a semi-annual yield to maturity (Ys) should always be stated, using the following conversion formula:

$$Ys = 200 x [(1 + \frac{y}{100 x H})^{H/2}]$$

or

$$y = H \times 100 [(1 + Ys) - 1]$$

Appendix : Examples of Quotations and Price Calculations

A-1: Treasury bill

A bill, which matures on January 30, 1995, is sold for settlement on December 20, 1994

Quotation

Maturity date	Days to maturity	Yield	(% p.a.) -
		Bid	Offer
30/1/95	41	6.91	6.41

Settlement Price

Price per face value of 100 Baht

$$P = \frac{100}{1 + \frac{6.41}{100}} \times \frac{41}{365}$$

$$= 99.2851199353$$
 Baht

The settlement amount is calculated to 100th of 1 baht (no rounding up of decimal points eg. if face value is 1 million Baht, the settlement price is 992,851.19 Baht)

A-2: Accumulated-interest bond

A 7-year accumulated-interest bond which matures on December 25, 1997, with interest compounding semi-annually at a rate of 8.5% per annum, is sold for settlement on December 20, 1994

Quotation

		~~~	Bid	Offer	
Maturity date	Redemption	Price	Yield	Price	Yield
	value				
25/12/97	179.09	137.36	9.00 %	138.35	8.75 %

### **Settlement Price**

Number of days to maturity = 3 years and 5 days =  $(365 \times 3) + 5 = 1,100$  days Offered price per face value of 100 Baht,

$$P = \frac{179.09}{(1100 / 182.5)}$$

$$= \frac{138.35}{200}$$
Baht

## A-3: Bond paying interest every 6 months

- A 10-year bond, which matures on April 30, 1996, pays interest at a rate of 11.25% per annum every 6 months on January 15 and July 15
- Settlement date is December 20, 1994

## a. Cum-Coupon Period

### Quotation

		Bid			Offer	
<u>Coupon</u>	Maturity	Price	Yield	Price	Yield	
11.25%	30/4/96	102.79	9.00%	103.11	8.75%	

#### **Settlement Price**

Number of days from previous coupon payment to settlement (DCS)

Accrued interest in DCS period

$$= 11.25 \times \frac{158}{365}$$

= 4.86986301 Baht/100 Baht

Settlement price per face value of 10 million baht

$$=$$
 10,311,000.00 + 486,986.30

= 10,797,986.30 Baht

## Price/yield calculation using given formulae:

$$Q + (11.25 \times \frac{158}{365}) = 11.25/2 + 11.25/2 + \frac{(26)}{182.5}$$

$$(1 + 8.75) + \frac{(27.5)}{200} + \frac{(1 + 26)}{182.5}$$

$$(1 + 8.75) + \frac{(2 + 26)}{200} + \frac{(2 + 26 + 106)}{182.5}$$

$$(1 + 8.75) + \frac{(2 + 26 + 106)}{200}$$

$$(1 + 8.75) + \frac{(2 + 26 + 106)}{200}$$

$$(1 + 8.75) + \frac{(2 + 26 + 106)}{200}$$

$$Q + 4.86986301 = 5.59078980 + 5.35644532 + 5.13192366 + 91.90063056$$

Quoted price = Q = 103.1099263 Baht

### or alternatively:

$$v = 1 = 0.95808383$$

$$\frac{1}{1 + 8.75}$$

$$\frac{200}{1}$$

$$Q + (11.25 \times 158) = (0.9581) \times 11.25 \left[ \frac{1}{2} + \frac{1 - (0.9581)}{8.75/100} \right]$$

365

$$Q + 4.86986301 = 16.07915877 + 91.90063056$$

Quoted price = Q = 103.1099263 Baht

### b. Ex-Coupon Period

From previous example A-3 if settlement date is December 20, 1994 (after the ex-coupon date):

## Quotation

			Bid		Offer	
Coupon	Maturity		Price (XC)*	Yield	Price (XC)*	Yield
11.25%	30/4/96	•	102.87	9.00%	103.19	8.75%

^{*}Ex-coupon

#### **Settlement Price**

Number of days from settlement to next coupon payment (DSC)

Dec 21, 94 to Jan 15, 95 = 26 days

Accrued interest in DSC period = 
$$-11.25 \times \frac{26}{365}$$

=  $-0.80136986$  Baht/100 Baht

Settlement price per face value of 10 million Baht

## Price/yield calculation

$$Q - (11.25 \times 26) = (0.9581) \times 11.25 \left[ \frac{0}{2} + 1 - (0.9581) \right]$$

$$= \left[ \frac{3 - 1 + 26 + 106}{182.5} \right]$$

$$+ \left[ \frac{100 + (11.25 \times 106)}{365} \right] \times (0.9581)$$

$$Q - 0.80136986 = 10.48836897 + 91.90063056 = 102.38899953$$

$$Quote price = Q = 103.19036939 Baht$$

## A-4: Bond paying interest every quarter

From example A-3, if interest is paid every quarter on January 15,

April 15, July 15 and October 15 and settlement date is

December 20, 1994:

## Quotation

		Bid		Qffer		
Coupon	Maturity	Price	Yield	Price	Yield	
11.25%	30/04/96	102.96	9.00%	103.27	8.75%	

## **Settlement Price**

Number of days from previous coupon payment to settlement (DCS)

Oct 16, 94 to Dec 20, 94 = 66 days Accrued interest in DCS period = 11.25 x 66

= 2.03424658 Baht/100 Baht

Settlement price per face value of 10 million baht

= 10,327,000 + 203,424.65

= 10,530,424.65 Baht

## Price/yield calculation (Formula on page 6)

■ Convert semi-annually compounded yield (Ys) to quarterly compounded yield (y) by using the following formula

$$y = H \times 100 \left[ \left( 1 + \frac{Ys}{200} \right) - 1 \right]$$

$$= 4 \times 100 \left[ \left( 1 + \frac{8.75}{200} \right) - 1 \right] = 8.65633484$$

$$v = \frac{1}{1 + \frac{8.65633484}{365}} = 0.97881757$$

$$Q + (11.25 \times \frac{66}{365}) = (0.97881757) \times 11.25 \left[ \frac{1}{4} + \frac{1}{1} - \frac{(0.97881757)}{8.6563348/100} \right]$$

$$+ \left[ 100 + \left( 11.25 \times \frac{15}{365} \right) \right] \times (0.97881757)$$

$$Q + 2.0342465 = 15.9088609 + 89.3993124 = 105.30817335$$

$$Quoted price = Q = 103.27392678 Baht$$

May 22, 1995

Analysis and Money Market Operations Division Banking Department Bank of Thailand Tel. 2835452, 2800606